\(\int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx\) [401]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 433 \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 (a-b) \sqrt {a+b} \left (19 a^2 A b+8 A b^3+63 a^3 B-14 a b^2 B\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^4 d}+\frac {2 (a-b) \sqrt {a+b} \left (8 A b^2+a^2 (25 A-63 B)+2 a b (3 A-7 B)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^3 d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (25 a^2 A-4 A b^2+7 a b B\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 a^2 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/7*A*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(7/2)+2/35*(A*b+7*B*a)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/
a/d/cos(d*x+c)^(5/2)+2/105*(25*A*a^2-4*A*b^2+7*B*a*b)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a^2/d/cos(d*x+c)^(3/2)
+2/105*(a-b)*(19*A*a^2*b+8*A*b^3+63*B*a^3-14*B*a*b^2)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/
cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/
2)/a^4/d+2/105*(a-b)*(8*A*b^2+a^2*(25*A-63*B)+2*a*b*(3*A-7*B))*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+
b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(
a-b))^(1/2)/a^3/d

Rubi [A] (verified)

Time = 1.34 (sec) , antiderivative size = 433, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3078, 3134, 3077, 2895, 3073} \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {2 \left (25 a^2 A+7 a b B-4 A b^2\right ) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{105 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (a-b) \sqrt {a+b} \left (a^2 (25 A-63 B)+2 a b (3 A-7 B)+8 A b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{105 a^3 d}+\frac {2 (a-b) \sqrt {a+b} \left (63 a^3 B+19 a^2 A b-14 a b^2 B+8 A b^3\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{105 a^4 d}+\frac {2 (7 a B+A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{7 d \cos ^{\frac {7}{2}}(c+d x)} \]

[In]

Int[(Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(9/2),x]

[Out]

(2*(a - b)*Sqrt[a + b]*(19*a^2*A*b + 8*A*b^3 + 63*a^3*B - 14*a*b^2*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b
*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqr
t[(a*(1 + Sec[c + d*x]))/(a - b)])/(105*a^4*d) + (2*(a - b)*Sqrt[a + b]*(8*A*b^2 + a^2*(25*A - 63*B) + 2*a*b*(
3*A - 7*B))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b
)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(105*a^3*d) + (2*A*Sqrt
[a + b*Cos[c + d*x]]*Sin[c + d*x])/(7*d*Cos[c + d*x]^(7/2)) + (2*(A*b + 7*a*B)*Sqrt[a + b*Cos[c + d*x]]*Sin[c
+ d*x])/(35*a*d*Cos[c + d*x]^(5/2)) + (2*(25*a^2*A - 4*A*b^2 + 7*a*b*B)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])
/(105*a^2*d*Cos[c + d*x]^(3/2))

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3078

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*a - A*b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e
 + f*x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n - 1)*Simp[c*(a*A - b*B)*(m + 1) + d*n*(A*b - a*B) + (d*(a*A - b*B)*(m + 1) - c*(A*b - a*B)*
(m + 2))*Sin[e + f*x] - d*(A*b - a*B)*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2}{7} \int \frac {\frac {1}{2} (A b+7 a B)+\frac {1}{2} (5 a A+7 b B) \cos (c+d x)+2 A b \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 \int \frac {\frac {1}{4} \left (25 a^2 A-4 A b^2+7 a b B\right )+\frac {1}{4} a (23 A b+21 a B) \cos (c+d x)+\frac {1}{2} b (A b+7 a B) \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{35 a} \\ & = \frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (25 a^2 A-4 A b^2+7 a b B\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {8 \int \frac {\frac {1}{8} \left (19 a^2 A b+8 A b^3+63 a^3 B-14 a b^2 B\right )+\frac {1}{8} a \left (25 a^2 A+2 A b^2+49 a b B\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{105 a^2} \\ & = \frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (25 a^2 A-4 A b^2+7 a b B\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {\left ((a-b) \left (8 A b^2+a^2 (25 A-63 B)+2 a b (3 A-7 B)\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{105 a^2}+\frac {\left (19 a^2 A b+8 A b^3+63 a^3 B-14 a b^2 B\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{105 a^2} \\ & = \frac {2 (a-b) \sqrt {a+b} \left (19 a^2 A b+8 A b^3+63 a^3 B-14 a b^2 B\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^4 d}+\frac {2 (a-b) \sqrt {a+b} \left (8 A b^2+a^2 (25 A-63 B)+2 a b (3 A-7 B)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{105 a^3 d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 (A b+7 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{35 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \left (25 a^2 A-4 A b^2+7 a b B\right ) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{105 a^2 d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.56 (sec) , antiderivative size = 1408, normalized size of antiderivative = 3.25 \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\frac {-\frac {4 a \left (25 a^4 A-17 a^2 A b^2-8 A b^4-14 a^3 b B+14 a b^3 B\right ) \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-4 a \left (-19 a^3 A b-8 a A b^3-63 a^4 B+14 a^2 b^2 B\right ) \left (\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )+2 \left (-19 a^2 A b^2-8 A b^4-63 a^3 b B+14 a b^3 B\right ) \left (\frac {i \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {a+b \cos (c+d x)} E\left (i \text {arcsinh}\left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )|-\frac {2 a}{-a-b}\right ) \sec (c+d x)}{b \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {\frac {(a+b \cos (c+d x)) \sec (c+d x)}{a+b}}}+\frac {2 a \left (\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )}{b}+\frac {\sqrt {a+b \cos (c+d x)} \sin (c+d x)}{b \sqrt {\cos (c+d x)}}\right )}{105 a^3 d}+\frac {\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \left (\frac {2 \sec ^3(c+d x) (A b \sin (c+d x)+7 a B \sin (c+d x))}{35 a}+\frac {2 \sec ^2(c+d x) \left (25 a^2 A \sin (c+d x)-4 A b^2 \sin (c+d x)+7 a b B \sin (c+d x)\right )}{105 a^2}+\frac {2 \sec (c+d x) \left (19 a^2 A b \sin (c+d x)+8 A b^3 \sin (c+d x)+63 a^3 B \sin (c+d x)-14 a b^2 B \sin (c+d x)\right )}{105 a^3}+\frac {2}{7} A \sec ^3(c+d x) \tan (c+d x)\right )}{d} \]

[In]

Integrate[(Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(9/2),x]

[Out]

((-4*a*(25*a^4*A - 17*a^2*A*b^2 - 8*A*b^4 - 14*a^3*b*B + 14*a*b^3*B)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b
)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[
c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c
+ d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 4*a*(-19*a^3*A*b - 8*a*A*b^3 - 63*a^4*B +
 14*a^2*b^2*B)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/
a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])
*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*
Cos[c + d*x]]) - (Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)
/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos
[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a
+ b*Cos[c + d*x]])) + 2*(-19*a^2*A*b^2 - 8*A*b^4 - 63*a^3*b*B + 14*a*b^3*B)*((I*Cos[(c + d*x)/2]*Sqrt[a + b*Co
s[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[C
os[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*Co
t[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Cs
c[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]],
 (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (a*Sqrt[((a + b)
*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])
*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/
a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])))/b + (Sqrt[
a + b*Cos[c + d*x]]*Sin[c + d*x])/(b*Sqrt[Cos[c + d*x]])))/(105*a^3*d) + (Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c
+ d*x]]*((2*Sec[c + d*x]^3*(A*b*Sin[c + d*x] + 7*a*B*Sin[c + d*x]))/(35*a) + (2*Sec[c + d*x]^2*(25*a^2*A*Sin[c
 + d*x] - 4*A*b^2*Sin[c + d*x] + 7*a*b*B*Sin[c + d*x]))/(105*a^2) + (2*Sec[c + d*x]*(19*a^2*A*b*Sin[c + d*x] +
 8*A*b^3*Sin[c + d*x] + 63*a^3*B*Sin[c + d*x] - 14*a*b^2*B*Sin[c + d*x]))/(105*a^3) + (2*A*Sec[c + d*x]^3*Tan[
c + d*x])/7))/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(4603\) vs. \(2(395)=790\).

Time = 26.96 (sec) , antiderivative size = 4604, normalized size of antiderivative = 10.63

method result size
parts \(\text {Expression too large to display}\) \(4604\)
default \(\text {Expression too large to display}\) \(4663\)

[In]

int((a+cos(d*x+c)*b)^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x,method=_RETURNVERBOSE)

[Out]

-2/105*A/d*(-15*a^4*sin(d*x+c)+a^2*b^2*cos(d*x+c)^2*sin(d*x+c)-8*b^4*cos(d*x+c)^4*sin(d*x+c)-25*a^4*cos(d*x+c)
^2*sin(d*x+c)-19*a^2*b^2*cos(d*x+c)^4*sin(d*x+c)-8*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+c
os(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^4*cos(d*x+c)^5+25*EllipticF(cot(d
*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*a^4*cos(d*x+c)^5-16*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*
x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^4*cos(d*x+c)^4+50*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-
b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^4*cos(d*x+c
)^4-8*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*b^4*cos(d*x+c)^3+25*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+co
s(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^4*cos(d*x+c)^3-16*EllipticE(cot(d*
x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*a*b^3*cos(d*x+c)^4+38*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d
*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^3*b*cos(d*x+c)^4+4*EllipticF(cot(d*x+c)-csc(d*x+c),(-(
a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*b^2*cos
(d*x+c)^4+16*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/
2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b^3*cos(d*x+c)^4-19*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2
))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^3*b*cos(d*x+c)^3-19*Ellip
ticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*a^2*b^2*cos(d*x+c)^3-8*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)
*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b^3*cos(d*x+c)^3+19*EllipticF(cot(d*x+c)-c
sc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
)*a^3*b*cos(d*x+c)^3+2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/
(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*b^2*cos(d*x+c)^3+8*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/
(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b^3*cos(d*x+c)
^3-19*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^3*b*cos(d*x+c)^5-19*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+
cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*b^2*cos(d*x+c)^5-8*EllipticE(c
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*
x+c)))^(1/2)*a*b^3*cos(d*x+c)^5+19*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+
cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^3*b*cos(d*x+c)^5+2*EllipticF(cot(d*x+c)-csc(d*x+c
),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^2*b^
2*cos(d*x+c)^5+8*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))
^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b^3*cos(d*x+c)^5-38*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^
(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a^3*b*cos(d*x+c)^4-38*E
llipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*a^2*b^2*cos(d*x+c)^4-25*a^4*cos(d*x+c)^3*sin(d*x+c)-15*a^4*cos(d*x+c)*sin(d*x+c)-18*a^3
*b*cos(d*x+c)*sin(d*x+c)-18*a^3*b*cos(d*x+c)^2*sin(d*x+c)-44*a^3*b*cos(d*x+c)^3*sin(d*x+c)+a^2*b^2*cos(d*x+c)^
3*sin(d*x+c)-4*a*b^3*cos(d*x+c)^3*sin(d*x+c)-25*a^3*b*cos(d*x+c)^4*sin(d*x+c)+4*a*b^3*cos(d*x+c)^4*sin(d*x+c))
/(1+cos(d*x+c))/(a+cos(d*x+c)*b)^(1/2)/cos(d*x+c)^(7/2)/a^3-2/15*B/d*(2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b
)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+
c)^4+7*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*
b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^4-2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^4-18*EllipticE(co
t(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(
a+b))^(1/2)*a^2*b*cos(d*x+c)^3+4*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^3+14*EllipticF(cot(d*x+c)-csc(d*x+c)
,(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*c
os(d*x+c)^3-4*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(
d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^3-9*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2
))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^2+18*Ellip
ticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*
x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^3-9*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^2+2*EllipticE(cot(d*x+c)-csc(d*x+
c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b^3*c
os(d*x+c)^2+a*b^2*cos(d*x+c)^2*sin(d*x+c)-4*a^2*b*cos(d*x+c)*sin(d*x+c)-3*sin(d*x+c)*cos(d*x+c)*a^3-4*sin(d*x+
c)*cos(d*x+c)^2*a^2*b-3*a^3*sin(d*x+c)+2*b^3*cos(d*x+c)^3*sin(d*x+c)+2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)
/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c
)^2+7*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b
)/(1+cos(d*x+c))/(a+b))^(1/2)*a^2*b*cos(d*x+c)^2-2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2*cos(d*x+c)^2-9*EllipticE(cot(
d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+
b))^(1/2)*a^2*b*cos(d*x+c)^4-9*a^2*b*cos(d*x+c)^3*sin(d*x+c)-a*b^2*cos(d*x+c)^3*sin(d*x+c)+9*EllipticF(cot(d*x
+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))
^(1/2)*a^3*cos(d*x+c)^2-9*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1
/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^4+2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(
a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*b^3*cos(d*x+c)^4+
9*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1
+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^4-18*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*a^3*cos(d*x+c)^3+4*EllipticE(cot(d*x+c)-
csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/
2)*b^3*cos(d*x+c)^3-9*a^3*cos(d*x+c)^2*sin(d*x+c))/(1+cos(d*x+c))/(a+cos(d*x+c)*b)^(1/2)/cos(d*x+c)^(5/2)/a^2

Fricas [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algorithm="fricas")

[Out]

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(9/2), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(9/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(9/2), x)

Giac [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\cos \left (d x + c\right )^{\frac {9}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(9/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/cos(d*x + c)^(9/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {9}{2}}(c+d x)} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{9/2}} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(1/2))/cos(c + d*x)^(9/2),x)

[Out]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(1/2))/cos(c + d*x)^(9/2), x)